DETERMINATION OF THE DIRECT CAPTURE CONTRIBUTION FOR 13 N $(p,\gamma)^{14}$ O FROM THE 14 O \rightarrow 13 N + p ASYMPTOTIC NORMALIZATION COEFFICIENT

Xiaodong Tang^{a),b)}, A. Azhari^{b)}, Changbo Fu^{b)}, C.A. Gagliardi^{b)}, A.M. Mukhamedzhanov^{b)}, F. Pirlepesov^{b)}, L. Trache^{b)}, R.E. Tribble^{b)}, V. Burjan^{c)}, V. Kroha^{c)}, and B. F. Irgaziev^{d)}

a) Argonne National Laboratory, Argonne, IL 60439, USA
b) Cyclotron Institute, Texas A&M University, College Station, TX 77843
c) Institute of Nuclear Physics, Czech Academy of Sciences, Prague-Řež, Czech Republic
d) Department of Physics, National University, Tashkent, Uzbekistan

 13 N $(p,\gamma)^{14}$ O is one of the key reactions which trigger the onset of the hot CNO cycle [1]. This transition occurs when the proton capture rate on 13 N is faster, due to increasing stellar temperature ($\geq 10^8$ K), than the 13 N β -decay rate [2]. The rate of this reaction is dominated by the resonant capture through the first excited state of 14 O ($E_r = 0.528$ MeV). However, through constructive interference direct capture below the resonance makes a nonnegligible contribution to the reaction rate. We have determined this direct contribution by measuring the asymptotic normalization coefficient for 14 O $\rightarrow ^{13}$ N + p. In our experiment, an 11.8 MeV/nucleon 13 N radioactive beam was used to study the 14 N(13 N, 14 O) 13 C peripheral transfer reaction and the asymptotic normalization coefficient, $(C_{p_{1/2}}^{14O})^2 = 29.0 \pm 4.3$ fm⁻¹, was extracted from the measured cross section. The radiative capture cross section was estimated using an R-matrix approach with the measured asymptotic normalization coefficient and the latest resonance parameters. We find the S factor for 13 N(p,γ) 14 O to be larger than previous estimates [3]. Consequently the transition from the cold to hot CNO cycle for novae would be controlled by the slowest proton capture reaction 14 N(14 N(14) 15 O.

- [1] M. Wiescher, J. Gorres and H. Schatz, J. Phys. G 25, R133 (1999).
- [2] M.S. Smith et al., Phys. Rev. C 47, 2740 (1993).
- [3] P. Decrock et al., Phys. Rev. C 48, 2057 (1993).